
CO2 effects on diatoms: A Synthesis of more than a decade of ocean 1 

acidification experiments with natural communities 2 

 

Lennart. T. Bach1,2*, Jan. Taucher1 3 

1Biological Oceanography, GEOMAR, Helmholtz Centre for Ocean Research, Kiel, 4 

Germany  5 

2Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 6 

Australia 7 

*Corresponding Author lennart.bach@utas.edu.au  8 

 9 

Keywords: Ocean acidification, climate change, mesocosm, literature review, food web, 10 

phytoplankton, Bacillariophyceae 11 

 12 

Abstract 13 

Diatoms account for ~40% of marine primary production and are considered to be key 14 

players in the biological carbon pump. Ocean acidification (OA) is expected to affect 15 

diatoms primarily by changing the availability of CO2 as a substrate for photosynthesis 16 

or through altered ecological interactions within the marine food web. Yet, there is little 17 

consensus how entire diatom communities will respond to increasing CO2. To address 18 

this question, we synthesized the literature from over a decade of OA-experiments with 19 

natural diatom communities to uncover: 1) if and how bulk diatom communities respond 20 

to elevated CO2; 2) if shifts within the diatom communities could be expected and how 21 

they are expressed with respect to taxonomic affiliation and size structure. We found that 22 

diatom communities responded to high CO2 in ~60 % of the experiments and in this case 23 

more often positively (56 %) than negatively (32 %; 12 % did not report the direction of 24 

 1 

Ocean Sci. Discuss., https://doi.org/10.5194/os-2019-47
Manuscript under review for journal Ocean Sci.
Discussion started: 15 May 2019
c© Author(s) 2019. CC BY 4.0 License.



 2 

change). Shifts among different diatom species were observed in 65 % of the experiments. 25 

Our synthesis supports the hypothesis that high CO2 particularly favors larger species as 26 

12 out of 13 experiments which investigated cell size found a shift towards larger species. 27 

Unraveling winners and losers with respect to taxonomic affiliation was difficult due to 28 

a limited database, but there is evidence that the genus Pseudo-nitzschia could be among 29 

the losers. We conclude that OA-induced changes in diatom competitiveness and 30 

assemblage structure must be classified as a “risk for ecosystem services” due to the 31 

pivotal role diatoms play in trophic transfer and biogeochemical cycles. 32 

1. Introduction 33 

The global net primary production (NPP) of all terrestrial and marine autotrophs amounts 34 

to approximately 105 petagrams (Pg) of carbon per year (Field et al., 1998). Marine 35 

diatoms, a taxonomically diverse group of cosmopolitan phytoplankton, were estimated 36 

to contribute up to 25 %  (26 Pg C year-1) to this number, which is more than the annual 37 

primary production in any biome on land (Field et al., 1998; Nelson et al., 1995; Tréguer 38 

and De La Rocha, 2013). Thus, diatoms are likely the most important single taxonomic 39 

group of primary producers on Earth and any change in their prevalence relative to other 40 

phytoplankton taxa could profoundly alter marine food web structures and thereby affect 41 

ecosystem services such as fisheries or the sequestration of CO2 in the deep ocean 42 

(Armbrust, 2009; Tréguer et al., 2018). 43 

The most conspicuous feature of diatoms is the formation of a silica shell, which is 44 

believed to primarily serve as protection against grazers (Hamm and Smetacek, 2007; 45 

Pančić and Kiørboe, 2018). Since the formation of this shell requires dissolved silicate, 46 

diatoms are often limited by silicon as a nutrient rather than by nitrogen or phosphate 47 

(Brzezinski and Nelson, 1996). However, when dissolved silicate is available, diatoms 48 
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benefit from their high nutrient uptake and growth rates, allowing them to outcompete 49 

other phytoplankton and form intense blooms in many ocean regions (Sarthou et al., 50 

2005). 51 

Diatoms display an enormous species richness, with recent estimates being in the range 52 

of 30,000 species (Mann and Vanormelingen, 2013). Although only a fraction has been 53 

morphologically described, known diatom taxa span a size range of several orders of 54 

magnitude (<5 µm up to a few mm) with a wide range of morphologies and life strategies, 55 

e.g. single cells and cell chains, pelagic and benthic habitats (Armbrust, 2009; Mann and 56 

Vanormelingen, 2013; Sournia et al., 1991). Accordingly, they should not be treated as 57 

one functional group, but rather as a variety of subgroups occupying different niches.  58 

It is well recognized that the global importance of diatoms as well as their diversity in 59 

morphology and life style is tightly linked to the functioning of pelagic food webs and 60 

elemental cycling in the oceans. For example, iron enrichment experiments in the 61 

Southern Ocean found that a shift in diatom community composition from thick- to thin-62 

shelled species (“persistence strategy” vs. “boom-and-bust strategy”) can enhance carbon 63 

and alter nutrient export via sinking particles (Assmy et al., 2013; Smetacek et al., 2012). 64 

This may not only affect element fluxes locally but enhance nutrient retention within the 65 

Southern Ocean and reduce productivity in the north which underlines how important 66 

diatom community shifts can be on a global scale (Boyd, 2013; Primeau et al., 2013; 67 

Sarmiento et al., 2004). Likewise, the cell size of diatoms can play an important role in 68 

transferring energy to higher trophic levels, as the dominance of larger species is 69 

generally considered to reduce the length of the food chain and lead to higher trophic 70 

transfer efficiency (Sommer et al., 2002). Consequently, understanding impacts of global 71 

change on diatom community composition is crucial for assessing the sensitivity of 72 

biogeochemical cycles and ecosystem services in the world oceans.   73 
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It has become evident that the sensitivity of diatoms to increasing pCO2 is highly variable, 74 

likely being related to specific traits such as cell size or the carbon fixation pathway, as 75 

well as interactions with other environmental factors such as nutrient stress, temperature 76 

or light (Gao et al., 2012; Hoppe et al., 2013; Wu et al., 2014). However, it is still rather 77 

unclear how these species-specific differences in CO2 sensitivities manifest themselves 78 

on the level of diatom communities. This knowledge gap motivated us to compile the 79 

presently available experimental data in order to reveal common responses of diatom 80 

communities to high CO2 and thereby assess potential scenarios of shifts in diatom 81 

community composition under ocean acidification.  82 

2. Literature investigation  83 

2.1. Approach 84 

Our original intention was to conduct a classical meta-analysis, which would have yielded 85 

the benefit of a quantitative measure of diatom responses to OA, expressed as an overall 86 

effect size (i.e. combined magnitude) such as the response ratio. However, our literature 87 

analysis revealed a large variability in experimental pCO2 ranges as well as measured 88 

response variables, which cannot be directly compared among each other (e.g. 89 

microscopic cell counts, pigment concentrations, genetic tools). These limitations impede 90 

data aggregation as required for a classical meta-analysis. Furthermore, experimental 91 

setups differed widely in terms of other environmental factors such as temperature, light, 92 

and nutrient concentrations, all of which are known to modulate potential responses to 93 

pCO2 (Boyd et al., 2018), thereby further complicating data aggregation for meta-94 

analysis. Therefore, we chose an alternative, semi-quantitative approach where diatom 95 

responses to increasing CO2 are grouped in categories (see section 2.2) and also allows 96 

to account for differences in experimental setups, e.g. with respect to container volume. 97 
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While this approach excludes the determination of effect size, it provides an unbiased 98 

insight on the direction of change of potential CO2 effects.  99 

2.2. Data compilation 100 

We explored the response of diatom assemblages to high CO2 (low pH) by searching the 101 

literature for relevant results with Google Scholar (December 15, 2017) using the 102 

following search query: diatom OR Bacillariophyceae AND "ocean acidification" OR 103 

"high CO2" or "carbon dioxide" OR "elevated CO2" OR "elevated carbon dioxide" OR 104 

"low pH" OR "decreased pH". The first 200 results were inspected and considered to be 105 

relevant when they were published in peer-reviewed journals, contained a description of 106 

the relevant methodological details, a statistical analysis or at least a transparent 107 

description of variance and uncertainties, and tested CO2 effects on natural plankton 108 

assemblages (artificially composed communities were not considered). We then carefully 109 

checked the cited literature in these relevant studies to uncover other studies that were 110 

missed by the initial search. Furthermore, we checked the “Ocean Acidification news 111 

stream provided by the Ocean Acidification International Coordination Centre” under the 112 

tag “phytoplankton” (https://news-oceanacidification-icc.org/tag/phytoplankton/) for 113 

relevant updates since December 2017 (last check on January 16, 2019).  114 

There were two response variables of interest for the literature compilation:  115 

1) The response of the “bulk diatom community” to high CO2. For this we checked if the 116 

abundance of diatoms, the biomass of diatoms, or the relative portion of diatoms within 117 

the overall phytoplankton assemblage increased or decreased under high CO2 relative to 118 

the control. We distinguished between “positive”, “negative”, and “no effect” following 119 

the statistical results provided in the individual references. When the CO2 effect on the 120 

bulk community was derived from abundance data we also checked if there are 121 
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indications for a concomitant shift in the biomass distribution among species. This is 122 

relevant because, for example, an increase in bulk abundance could coincide with a 123 

decrease in bulk biomass when the species driving the abundances is smaller. We found 124 

no indications for conflicting cases but acknowledge that not every reference provided 125 

sufficient data on morphological details to fully exclude this scenario.  126 

2) The CO2-dependent species shifts within the diatom community with respect to 127 

taxonomic composition and/or size structure. Unfortunately, cell size of the species was 128 

not reported for all experiments. Thus, we distinguished between “no shifts”, “shifts 129 

between species with unspecified size”, as well as “shifts towards larger or smaller 130 

species” when this information was provided. Furthermore, we noted the winners and 131 

losers within the diatom communities when these were reported (on the genus level). 132 

In case the data was taken from factorial multiple stressor experiments (e.g. CO2 x 133 

temperature) we only considered the control treatment at ambient conditions (e.g. at 134 

control temperature). Furthermore, we extracted various metadata from each study 135 

largely following the literature analysis of (Schulz et al., 2017). All bulk diatom 136 

responses, community shifts, and metadata is compiled/described in Table 1 and most of 137 

it is self-explanatory (e.g. incubation temperature). The habitats of the investigated 138 

diatom communities were categorized according to water depth, salinity, or life style in 139 

the case of benthic communities: “oceanic” = water depth > 200 m (unless the habitat lies 140 

within a fjord or fjord-like strait), S > 30; “coastal” = water depth < 200 m, S > 30; 141 

“estuarine” = water depth < 200 m, S < 30; “benthic” = benthic communities (diatoms 142 

growing on plates) were investigated. We reconstructed the water depth in case it was not 143 

provided in the paper using Google Earth Pro (version 7.3.2.5495). The coordinates 144 

provided in some of the experiments conducted in land-based facilities were imprecise 145 

and marked positions on land. In this case the habitats were set to coastal or estuarine 146 
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depending on salinity. If salinity was not given we checked the location on Google Earth 147 

for potential fresh water sources and also checked the text for more cryptic indications 148 

(e.g. “euryhaline” in a lagoon were strong indications for an estuarine habitat). The 149 

methods with which responses of the bulk diatom communities to high OA were 150 

determined varied greatly among studies and included light microscopy (LM), pigment 151 

analyses (PA), flow cytometry (FC), genetic tools (PCR), and biogenic silica (BSi) 152 

analyses (Table 1).  153 

2.3. Balancing the influence of smaller and larger scale experiments to account for 154 

the “degree of realism” 155 

The most realistic OA experiment would be one where all aspects of the natural habitat 156 

are represented correctly. Such setups are possible for benthic communities which can be 157 

sampled in situ along a natural CO2 gradient at volcanic CO2 seeps (Fabricius et al., 2011; 158 

Hall-Spencer et al., 2008; Johnson et al., 2011). However, this does not work easily for 159 

the large majority of pelagic studies compiled herein due to water advection. Thus, OA 160 

experiments with pelagic communities are performed in closed containers which 161 

inevitably cause artefacts (Calvo-Díaz et al., 2011; Ferguson et al., 1984; Guangao, 1990; 162 

Menzel and Case, 1977). However, the degree by which they are unrealistic will differ 163 

from study to study depending on the experimental design (Duarte et al., 1997). Here, we 164 

aimed to develop a metric that allows us to estimate the realism of experiments with 165 

pelagic communities in order to balance their influence on the final outcome of the 166 

literature analysis. Most certainly, we do not mean to devalue any studies but think that 167 

the highly different scales of experiments should not be ignored when evaluating the 168 

literature. In the following we will first derive the equation for the proposed metric – 169 

termed the “relative degree of realism (RDR)” – and introduce the underlying 170 

assumptions. Afterwards we describe aspects that were considered while conceptualizing 171 
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the RDR.  172 

The experimental design in the studies considered herein ranged from smaller bottle 173 

experiments (e.g. 1 L) to in situ mesocosm studies with considerably larger incubation 174 

volumes (e.g. 75000 L). While smaller differences in incubation volumes (e.g. 0.5 vs. 2 175 

L) were shown to have no, or a minor, influence on physiological rates (Fogg and 176 

Calvario-Martinez, 1989; Hammes et al., 2010; Nogueira et al., 2014; Robinson and 177 

Williams, 2005), they can influence food web composition e.g. by excluding larger 178 

grazers (Calvo-Díaz et al., 2011; Spencer and Warren, 1996). Larger differences of 179 

incubation volumes (e.g. 10 vs. 10000 L) are considered to be important in all aspects 180 

(Duarte et al., 1997), with the larger volume being more representative of natural 181 

processes (Sarnelle, 1997). Therefore, our first assumption to conceptualize the RDR was 182 

that larger incubation volumes represent nature generally better than smaller ones.  183 

Plankton communities were pre-filtered in many experiments to exclude larger and often 184 

patchily distributed organisms. This is a valid procedure to reduce noise and to increase 185 

the likelihood to detect CO2 effects but it also influences the development of plankton 186 

communities as they modify the grazer/prey link within the food web (Ferguson et al., 187 

1984; Nogueira et al., 2014; Pomeroy et al., 1994). For example, (Nogueira et al., 2014) 188 

compared plankton successions of pre-filtered (100 µm) and unfiltered communities and 189 

found that the removal of larger grazers and diatoms gave room for green algae and 190 

picophytoplankton to grow. Such manipulations make the experiment less representative 191 

for a natural food web which brought us to the second assumption for the RDR: The 192 

smaller the mesh size during the pre-filtration treatment, the less complete and thus the 193 

less realistic is the pelagic food web. 194 

To parameterize the two abovementioned assumptions we first converted the volume 195 
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information provided in each experiment into a volume-to-surface ratio (V/S). The 196 

underlying thought is that V increases with the third power to the surface area of the 197 

incubator and is indicative for the relation of open space to hard surfaces (Ferguson et al., 198 

1984). Therefore we first converted V into a radius (r) assuming spherical shape: 199 

𝑟 = #$
%
&
'

(      (1).   200 

The surface (S) of the spherical volume was calculated as: 201 

S = 4πr-    (2) 202 

Assuming spherical shape was necessary because there is generally no information about 203 

the shape of the incubation containers available. Although shape can influence processes 204 

within the container (Pan et al., 2015), it is probably a less important factor to consider in 205 

light of the large volume differences compared herein (Table 1).  206 

The influence of pre-filtration treatments of the investigated plankton community is 207 

implemented by multiplying the V/S with the third root of the applied mesh size (dmesh in 208 

µm) so that the RDR is defined as: 209 

RDR = 	1
2 3d5678
(    (3). 210 

Thus, as for V/S, the influence of dmesh on RDR does not linearly increase but dampens 211 

with increasing dmesh. The rationale for the non-linear increase is that incubations will still 212 

have an increasing bias even if they do not have any pre-filtration treatment due to 213 

generally increasing organism motility with size. For example, when collecting a 214 

plankton community with a Niskin bottle, more motile organisms can escape from the 215 

approaching sampler so that the food web composure is still affected even without 216 
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subsequent pre-filtration. For this reason we also capped the maximum dmesh to 10,000 217 

µm when there was no pre-filtration treatment applied since none of the studies included 218 

significantly larger organisms. Figure 1 illustrates the change of RDR as a function of V 219 

and dmesh. High RDRs are calculated for large-scale in situ mesocosm studies (~50 – 190) 220 

while bottle experiments yield RDRs between ~1 – 12. 221 

The key pre-requisite for an experimental parameter to be included in the RDR equation 222 

(eq. 3) was that it is reported in all studies. Many parameters that we would have liked to 223 

use for the RDR are either insufficiently reported (e.g. the light environment) or not 224 

provided quantitatively at all (e.g. turbulence). We therefore had to work with very basic 225 

properties related to the experimental setup rather than to the experimental conditions.  226 

A particularly critical aspect of the RDR we had to deal with was the duration of the 227 

experiments (Time). Time is a quantity, which is reliably reported in all studies and 228 

therefore principally suitable for the RDR. Our first thoughts were that a realistic 229 

community experiment should be long enough to cover relevant ecological processes 230 

such as competitive exclusion and therefore also parameterized Time in the first versions 231 

of the RDR equation. However, we decided to not account for it in the final version 232 

because the factors that define the optimal duration of an experiment are poorly 233 

constrained. For example, a 1 day experiment in a 10 L container could indeed miss 234 

important CO2 effects caused by food web interactions. On the other hand, a 30 days 235 

experiment in the same container could reveal such indirect effects but at the same time 236 

be associated with profound bottle effects and make the study unrepresentative for 237 

simulated natural habitat. Thus, too long and too short are both problematic and the 238 

optimum is hard to find. One such attempt to find the optimum was made by (Duarte et 239 

al., 1997) who analyzed the plankton ecology literature between 1990 – 1995. By 240 

correlating the experimental duration with the incubation volume of published 241 
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experiments they provided an optimal length for any given volume. However, as noted 242 

by (Duarte et al., 1997), their correlation is based on publication success and therefore 243 

rather reflects common practice in plankton ecology experiments and not necessarily a 244 

mechanistic understanding of bottle effects. Thus, as there is no solid ground for a 245 

parameterization of Time we ultimately decided to not consider it for the RDR. 246 

3. Results 247 

We found 54 relevant publications on CO2 experiments with natural diatom assemblages. 248 

Some publications included more than one experiment so that 69 experiments are 249 

considered hereafter (Table 1). Most were done with diatom communities from coastal 250 

environments (46 %) and oceanic (28%) environments. Estuarine and benthic 251 

communities were investigated in 16 % and 6% of the studies, respectively (Figs. 2 and 252 

3). 4 % of the studies did not provide coordinates where the samples were taken although 253 

the region was reported (Table 1; Fig. 3).  254 

One third (33 %) of all experiments revealed a positive influence of CO2 on the “bulk 255 

diatom community” (see section 2.2),  while 19 % revealed a negative one. 7 % of the 256 

studies found a CO2 effect but did not specify whether it is a positive or negative one. 41 257 

% found no effect (Fig. 4A; left column). Those experiments that revealed positive CO2 258 

effects on bulk diatom communities yielded the highest cumulative RDR score (∑RDR) 259 

of 605 while the ∑RDR for negative CO2 effects was 266. No CO2 effects yielded a score 260 

of 768 while an “unspecified effect” yielded 266.  261 

CO2-dependent shifts in diatom species composition were investigated with light 262 

microscopy except for (Endo et al., 2015) who used molecular tools,. Species shifts were 263 

investigated in a subset of 40 of the 69 experiments (Fig. 4B). Within this subset of 40 264 

studies, 12 (30 %, ∑RDR = 265) found a shift towards larger diatom species under high 265 
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CO2, 1 (2.5 %, ∑RDR = 10) found a shift towards smaller diatom species, and 13 (32.5 266 

%, ∑RDR = 103) found no CO2 effect on diatom community composition. 14 studies (35 267 

%, ∑RDR = 141) reported a CO2-dependent shift but did not further specify any changes 268 

in the size-class distribution (Fig. 4C).  269 

A taxon-specific assessment of potential winners and losers (on the genus level) was 270 

possible only to a limited extent, because most genera were not present in enough 271 

experiments to get useful results. Only Chaetoceros, Cylindrotheca, and Pseudo-272 

Nitzschia were explicitly investigated in at least 5 experiments, which we set as a 273 

minimum threshold.  Chaetoceros responded positively to high CO2 in 6 out of 9 274 

experiments (∑RDR of winning = 84; ∑RDR of losing = 61; Fig 5A). Cylindrotheca 275 

responded positively in 2 out 5 experiments (∑RDR of winning = 5; ∑RDR of losing = 276 

9;Fig. 5B). Pseudo-Nitzschia responded positively in 2 out of 9 experiments (∑RDR of 277 

winning = 3; ∑RDR of losing = 77; Fig. 5C). Thus, Pseudo-Nitzschia is the only genus, 278 

for which there seems to be a fairly consistent negative response to high CO2. 279 

4. Discussion 280 

Numerous physiological studies have shown that diatom growth and metabolic rates can 281 

be affected by seawater CO2 concentrations, and that these responses vary widely among 282 

different species (Gao and Campbell, 2014). Such inter-specific differences in pCO2 283 

sensitivity are an important feature as this could alter the composition of diatom 284 

assemblages in a changing ocean. In this regard, it is interesting to note that 285 

paleolimnologists have long been using diatom species composition as paleo-proxy to 286 

reconstruct lake pH (Battarbee et al., 2010). Hence, there is ample evidence that high CO2 287 

conditions have the potential to change the diatom species composition.  288 
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Indeed, our analysis revealed that CO2-induced changes in diatom community 289 

composition occurred in 27 out of 40 (i.e. 68 %) of community-level experiments which 290 

investigated species composition (Fig. 4C). This is certainly a conservative outcome 291 

because many studies have only looked at dominant species. In fact, one of the few 292 

experiments that investigated the diatom assemblage with higher taxonomical resolution 293 

found CO2 effects also on subdominant species (Sommer et al., 2015) which may have 294 

been overlooked in many other experiments.  295 

4.1 Winners and losers in the diatom community 296 

There was sufficient data (i.e. ≥5 experiments) for the genera Chaetoceros, 297 

Cylindrotheca, and Pseudo-Nitzschia to determine common responses to high CO2. 298 

Among these 3, only Pseudo-Nitzschia was fairly consistently identified as a “loser” 299 

within the investigated natural diatom communities. Chaetoceros was mostly winning 300 

while Cylindrotheca was mostly losing but the trends were not strong. The relatively 301 

weak performance of Pseudo-Nitzschia spp. was somewhat surprising because previous 302 

monoclonal experiments with this genus often reported a sometimes pronounced positive 303 

(Sun et al., 2011; Tatters et al., 2012), or no influence of high CO2 on their growth rate 304 

(Sugie and Yoshimura, 2013; Trimborn et al., 2013) but more rarely a negative one 305 

(Tatters et al., 2013). Likewise, laboratory competition experiments between Chaetoceros 306 

debilis and Pseudo-Nitzschia subcurvata saw the latter rather on the winning side under 307 

high CO2 although the difference between them was small (Trimborn et al., 2013). The 308 

reasons for the inconsistency between our results and the impression derived from 309 

controlled laboratory experiments could be manifold. Since our outcome is based on 310 

“only” 9 experiments, it could still be coincidence. However, the pronounced difference 311 

in the RDR value alleviate this concern to some extent (see numbers on top of Fig. 5C). 312 

If the inconsistency is reflecting a true biological pattern than this would emphasize once 313 
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more that ecological success within a natural community cannot be easily derived from 314 

physiological studies.           315 

4.2 CO2 effects on diatom assemblages originating from (direct) physiological 316 

responses to high CO2 317 

Most studies that found effects of pCO2 on diatom communities related these changes to 318 

CO2 fertilization of photosynthesis. Concentrations of CO2 in the surface ocean are 319 

relatively low compared to other forms of inorganic carbon, especially bicarbonate ion 320 

(HCO3-) (Zeebe and Wolf-Gladrow, 2001). However, RubisCO, the primary 321 

carboxylating enzyme used in photosynthesis, is restricted to CO2 for carbon fixation and 322 

has a relatively low affinity for CO2 compared to O2 (Falkowski and Raven, 2007). 323 

Therefore, diatoms (like many other phytoplankton species) operate a carbon 324 

concentrating mechanism (CCM) to enhance their CO2 concentration at the site of 325 

fixation relative to external concentrations (e.g. by converting HCO3- to CO2) and thereby 326 

establish higher rates of carbon fixation than what would be possible when only 327 

depending on diffusive CO2 uptake (Giordano et al., 2005). It is well known that the 328 

proportion of CO2 uptake vs. HCO3- uptake for photosynthesis varies largely among 329 

diatoms (Burkhardt et al., 2001; Rost et al., 2003; Trimborn et al., 2008) and is 330 

theoretically also a function of cell size (Flynn et al., 2012; Wolf-Gladrow and Riebesell, 331 

1997). Accordingly, increasing seawater pCO2 may increase the proportion of diffusive 332 

carbon uptake and/or lower the energy and resource requirements for CCM operation 333 

(Raven et al., 2011). From a physiological point of view, these mechanisms could allow 334 

for increased rates of photosynthesis and cell division.  335 

So how do these theoretical considerations align with (A) the variable and species-336 

specific physiological responses of diatoms to increasing CO2 (Dutkiewicz et al., 2015), 337 
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and (B) the results from community-level experiments compiled in this study? Regarding 338 

the variability of physiological responses, progress has recently been made by (Wu et al., 339 

2014) who experimentally demonstrated a positive relationship between cell volume and 340 

the magnitude of the CO2 fertilization effect on diatom growth rates. Their findings agree 341 

well with theoretical considerations, which predict that high CO2 is particularly beneficial 342 

for carbon acquisition by larger species as they are more restricted by diffusion gradients 343 

due to lower surface-to-volume ratios than smaller cells (Flynn et al., 2012; Wolf-344 

Gladrow and Riebesell, 1997). The outcome of our literature analysis supports this 345 

allometric concept (Fig. 4, Table 2). Twelve out of 13 experiments in which cell size was 346 

taken into account found a shift towards larger species. This is reflected in the ∑RDR 347 

score of 265 which is ~25 times higher than the opposite result (i.e. CO2-induced shifts 348 

towards smaller diatoms, Fig. 4C). An allometric scaling of CO2 sensitivity is particularly 349 

useful for modelling since cell size is a universal trait which is relatively easy to measure 350 

and therefore frequently available (Ward et al., 2012). Accordingly, it may lead to 351 

significant improvements of ecological and/or biogeochemical model projections under 352 

CO2 forcing when more than one size class for diatoms is considered.  353 

However, although the (Wu et al., 2014) allometric approach constitutes a solid starting 354 

point to help understanding the variable responses of different diatom species, it probably 355 

also still needs some further refinements. For example, central components of CCMs 356 

seem to be adapted to diatom cell sizes, thereby potentially alleviating a strict cell size 357 

dependency of CO2 limitation (Shen and Hopkinson, 2015). Furthermore, size 358 

dependency alone cannot account for taxon-specific differences in the mode of carbon 359 

acquisition (diffusive uptake of CO2 vs. CCM-supported uptake of HCO3-) and how this 360 

will affect the competitive ability of species under increasing CO2. OA will lead to much 361 

larger changes in dissolved CO2 than in HCO3-. Thus, species that rely to a larger extent 362 
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on a resource-intensive CCM may benefit more from increasing pCO2 on a cellular level, 363 

as they could increase the proportion of diffusive CO2 uptake. However, it is also possible 364 

that the same species would be disadvantaged on the community-level, because their 365 

niche (that is, being competitive at lower CO2 due to an efficient CCM) is diminished 366 

under high CO2 conditions. Which of the scenarios occurs in nature would also depend 367 

on how flexible species are in terms of switching carbon acquisition modes, as well as 368 

resource allocation. In this regard, it is noteworthy that only few physiological studies on 369 

OA effects have taken into account the role of changing nutrient concentrations or even 370 

a transition to nutrient limitation. The available experimental evidence suggests that 371 

increasing pCO2 may reduce cellular nutrient requirements for CCM operations and 372 

therefore free resources for elevated maximum diatom population densities, particularly 373 

when running into nutrient limitation (Taucher et al., 2015). Unfortunately, however, the 374 

relevance of this mechanism has so far only been investigated in monoclonal laboratory 375 

experiments but not on the community-level.  376 

These considerations illustrate that cell size is an important factor, but is not sufficient to 377 

predict physiological or even community-level of diatoms to OA. Moreover, the 378 

allometric concept as well as the additional mechanisms described above generally 379 

presume positive effects of CO2-fertilization, thus yielding no first order explanations for 380 

observed negative responses of diatoms to changing carbonate chemistry. Obviously, 381 

increasing CO2 concentrations are accompanied by increasing proton (H+) concentrations 382 

under ocean acidification. High H+ concentrations may reduce key metabolic rates above 383 

certain thresholds and outweigh the positive influence of CO2 fertilization as has been 384 

observed in coccolithophores (Bach et al., 2011, 2015).  385 

Another pathway by which ocean acidification may alter diatom communities is the pH 386 

effect on silicification and silica dissolution. Low seawater pH should theoretically 387 
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facilitate silicification as the precipitation of opal occurs in a cellular compartment with 388 

low pH conditions (pH ~5) (Martin-Jézéquel et al., 2000; Vrieling et al., 1999). At the 389 

same time, a lower pH should reduce chemical dissolution rates of the SiO2 frustule 390 

(Loucaides et al., 2012). While experimental evidence on this topic is still scarce and 391 

partly controversial  (Hervé et al., 2012; Mejía et al., 2013; Milligan et al., 2004), it is not 392 

unlikely that OA-induced changes in the formation and dissolution of biogenic silica may 393 

alter the strength of the frustule and therefore the palatability of diatoms to zooplankton 394 

grazers (Friedrichs et al., 2013; Hamm et al., 2003; Liu et al., 2016; Wilken et al., 2011). 395 

As for the other physiological effects e.g. on carbon fixation, it is likely that OA impacts 396 

on silicification will vary among different diatoms species e.g. according to their species-397 

specific intrinsic buffering capacity, thereby leading to further taxonomic shifts within 398 

diatom communities.   399 

The response of diatoms to increasing pCO2 in natural environments will be further 400 

modified by multiple other environmental drivers changing simultaneously. Climate 401 

change is expected to elevate ocean temperature, as well as also irradiance and nutrient 402 

availability via changes in stratification. Physiological experiments have shown that 403 

elevated pCO2 may have beneficial effects under low and moderate irradiance, but this 404 

effect may reverse under high light conditions due to enhanced photoinhibition (Gao 405 

2012). Analogously, warming may have positive or negative effects on photosynthesis 406 

and metabolism in general, depending on the thermal optima of the respective species 407 

(Boyd et al., 2018). Altogether, these multiple additional drivers will also affect diatom 408 

communities, leading to shifts in their taxonomic composition and size structure, which 409 

will interact with the impacts of OA. 410 

4.3 Indirect CO2 effects on diatom assemblages through food web interactions 411 
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Diatom community responses can not only originate from a direct CO2 effect on their 412 

physiology but also be caused indirectly through CO2 responses on other components of 413 

the food web. For example, if a grazer of a diatom species is negatively affected by OA 414 

then this may benefit the prey and indirectly promote its abundance. Direct OA impacts 415 

on zooplankton communities are usually assumed to play a minor role, although there is 416 

some experimental evidence that lower pH may have physiological effects at least on 417 

some sensitive species or developmental stages (Cripps et al., 2016; Thor and Dupont, 418 

2015; Thor and Oliva, 2015). Nevertheless, much of the currently available empirical 419 

evidence indicates that zooplankton communities are affected by OA rather via bottom-420 

up effects, e.g. via changes in primary production or taxonomic composition of the 421 

phytoplankton community (Meunier et al., 2017). However bottom-up effects on 422 

zooplankton biomass, size structure, or species composition may in turn trigger feedbacks 423 

on diatom communities, thereby leading to a feedback loop that may reinforce until a new 424 

steady state is reached. Such considerations illustrate that also second or third order 425 

effects need to be considered when assessing OA effects on the level of ecological 426 

communities. Accounting for such indirect effects requires a holistic approach 427 

considering all key players in of the food web (something that is beyond the scope of this 428 

study). Therefore, interpretations about what the observed responses could mean for 429 

entire plankton food webs or even biogeochemical element cycles (section 4.4) should 430 

always be regarded with some healthy skepticism as they often neglect the potential for 431 

indirect effects.  432 

4.4 Implications of changes in diatom community structure for pelagic food webs 433 

and biogeochemical cycles  434 

The taxonomic composition and size structure of phytoplankton communities influences 435 

the transfer of energy from primary production to higher trophic levels. In theory, larger 436 
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diatoms should support a more direct transfer because less trophic intermediates are 437 

needed and therefore less respiration occurs until prey items are in an appropriate size 438 

range for top predators (Azam et al., 1983; Pomeroy, 1974; Sommer et al., 2002). 439 

Likewise a reduced abundance of the potentially toxic genus Pseudo-Nitzschia under high 440 

CO2 could further improve trophic transfer and growth of consumers in food webs where 441 

Pseudo-Nitzschia exerts harmful impacts at present. Such changes at the bottom of a food 442 

web might eventually lead to higher production in higher trophic levels such as fish. 443 

Indeed, recent experimental evidence indicated that fish (including commercially 444 

important species) could under certain constellations benefit from high CO2 due to higher 445 

food availability, although it was not tested if this response is somehow linked to the 446 

diatom community (Goldenberg et al., 2018; Sswat et al., 2018).  447 

Fluxes of elements through the oceans are (like fluxes of energy through food webs) 448 

influenced by the composition of diatom communities (Sarmiento and Gruber, 2006). 449 

This is particularly well recognized in the context of organic carbon export to the deep 450 

ocean, for which diatoms are considered to play a pivotal role (Smetacek, 1985). Given 451 

that high CO2 favours large and perhaps more silicified diatoms over smaller ones 452 

(section 4.2), we might expect accelerated sinking and thus a positive feedback on the 453 

vertical carbon flux. This classical hypothesis is supported by observational evidence 454 

from two consecutive years of the North Atlantic spring bloom where, despite similar 455 

primary production, export was much higher in the year when the larger diatom species 456 

dominated (Boyd and Newton, 1995). However, whether the positive relationship 457 

between size and carbon export holds under all circumstances is by no means clear 458 

(Tréguer et al., 2018) . It is possible that shifts towards larger sized species coincide with 459 

shifts in other traits that feed back negatively on carbon export. For example, when the 460 

size shift is associated with decreasing C:Si stoichiometry it may ultimately reduce carbon 461 

Ocean Sci. Discuss., https://doi.org/10.5194/os-2019-47
Manuscript under review for journal Ocean Sci.
Discussion started: 15 May 2019
c© Author(s) 2019. CC BY 4.0 License.



 20 

export (Assmy et al., 2013).  462 

The abovementioned examples of trophic transfer and export fluxes illustrate the 463 

importance of the factor “diatom community structure” in the context of marine food 464 

production and biogeochemical fluxes. They also illustrate that our understanding of the 465 

feedbacks induced through changes in diatom communities is highly incomplete. Hence, 466 

with our limited understanding we must currently classify CO2-induced changes in 467 

diatom communities as “a potential risk” causing changes in key ecosystem services. 468 
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 947 

Tables and Figures 948 

 949 

Table 1. Response of diatom communities to high CO2. 69 experiments from 54 950 

publications were considered here. Location refers to the place where diatom 951 

communities were collected. The RDR is dimensionless (see methods). T is the average 952 

incubation temperature in °C. DoE are days of experiment with the number of samplings 953 

given as the second number. Pre-filt. gives the mesh size in case the collected plankton 954 

community was pre-filtered before incubation. Setup refers to the incubation style: 955 

undiluted volumes (batch), repeatedly diluted volumes (s.-cont.), flow-through setups 956 

(fl.-thr.; only benthos), chemostats (chem.; only pelagic), CO2 vent sites (seep; only 957 

benthos). Incubations can either be performed on deck (e.g. shipboards), in situ (e.g. in 958 

situ mesocosms) or under laboratory conditions. V refers to the incubation volume. 959 

Nutrient ammendments were made in some but not all studies. The element indicates 960 

which nutrients were added. Asterisks indicate the presense of residual nutrients at the 961 

beginning of the study. Manipulations were done with: CO2 saturated seawater (SWsat), 962 

acid additions (Acid), combined additions of acid and base (Comb.), CO2 gas additions 963 

(CO2), Aeration at target pCO2 (Aer.), Passing CO2 gas through a diffusive silicone tubing 964 

(Diff.). Meth. indicates the applied methodology to investigate diatom communities: light 965 

microscopy (LM), pigment analyses (PA), flow cytometry (FC), genetic tools (PCR), 966 

biogenic silica (BSi). The pCO2 range of the experiment with the number of treatments 967 

given in brackets. The response of the bulk diatom community to CO2: no effect (~), 968 
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positive (p), negative (n), not reported (N/A). The pCO2 response indicates approximately 969 

in between which treatments a CO2 response was observed. Please note that this is based 970 

on visual inspection of the datasets and therefore involves subjectivity. Please also note 971 

that the range equals the treatment values in case only two treatments were set up. CO2 972 

induced shifts between diatom species can be: shift to larger species (large), shift to 973 

smaller species (small), unspecified shift (shift), no species shift detected (~), not reported 974 

(N/A). Winners or losers of the diatom community comprise:  Chaetoceros (Chae), large 975 

Chaetoceros (Chae I), medium Chaetoceros (Chae II), small Chaetoceros (Chae III), 976 

Neosyndra (Neos), Rhabdonema (Rhab), Eucampia (Euca), Cerataulina (Cera), 977 

Thalassiosira (Thals), Proboscia (Prob), Pseudo-nitzschia (Ps-n), Thalassionema 978 

(Thalns), Cylindrotheca (Cyli), Guinardia (Guin), Synedropsis (Syned), Dactyliosolen 979 

(Dact), Toxarium (Toxa), Leptocylindrus (Lept), Grammatophora (Gram),  Bacillaria 980 

(Baci), Navicula (Navi).    981 

Reference lat long RDR  S  
T 

(°C) Habitat 

DoE/ # 
of 

sampl. 

Pre-
filt. 

(µm) Setup Incub. V (L) Nutr. Manip. Meth. 

pCO2 
range 
(µatm) 

CO2 
effect 

pCO2 
response 
(µatm) 

Intra-
taxon 
effect Winners Losers 

(Bach et al., 
2017) 58.264 11.479 76.2  29  7 est. 113/57 1000 batch in situ 50000 *none SWsat PA, LM 

(2) 
380, 
760 p 380 - 760 large Cosc   

(Bach et al., 
2019) 27.990 

-
15.369 59.6  37  18.5 coastal 32/21 3000 batch in situ 8000 N,P,Si SWsat LM, BSi 

(7) 
380 - 
1120 p 

380 - 
1120 large 

Chae, Guin, 
Lept Nitz 

(Biswas et al., 
2011) 16.750 81.100 2.1  25  29.5 est. 5/2 200 batch Deck 5.6 

*none/N,
P Comb. PA 

(4) 
230 - 
1860 n 

650 - 
1400 N/A     

(Biswas et al., 
2017) 17.000 83.000 1.5  ?  ? coastal 2/1 200 batch Deck 2 

*N,P,Si,F
e,(Zn) Comb. LM 

(2) 
230, 
2200 p 

230 - 
2200 shift Skel Thals 

(Davidson et 
al., 2016) -68.583 77.967 10.5  34  0.1 coastal 8/5 200 batch Lab 650 *Fe SWsat LM 

(6) 80 
- 2420 n 

1280 - 
1850 small Frag Chae 

(Domingues et 
al., 2017) 37.017 -8.500 7.4  ?  23.5 est. 1/1 no batch Deck 4.5 

N,P,Si,NH
4 Comb. LM, PA 

(2) 
420, 
710 ~   ~     

(Donahue et al., 
2019) -45.800 

171.13
0 2.6  34  11 oceanic 14/5 200 batch Lab 10 *Fe Diff. LM, FC 

(2) 
350, 
620 ~   N/A     

(Donahue et al., 
2019) -45.830 

171.54
0 2.6  34  11 oceanic 21/4 200 batch Lab 10 *Fe Diff. LM, FC 

(2) 
350, 
630 p   N/A     

(Eggers et al., 
2014) 38.633 

-
27.067 1.9  36  15 coastal 9-10/3 200 batch Deck 4 N,P,Si Comb. LM 

(2) 
380, 
910 p 380 - 910 large Chae III Thals 

(Eggers et al., 
2014) 38.650 

-
27.250 1.9  36  15 coastal 9-10/4 200 batch Deck 4 N,P,Si Comb. LM 

(2) 
380, 
910 p 380 - 910 large 

Thals, Chae 
II Chae I 

(Eggers et al., 
2014) 38.617 

-
27.250 1.9  36  15 oceanic 9-10/5 200 batch Deck 4 N,P,Si Comb. LM 

(2) 
380, 
910 ~   N/A     
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(Endo et al., 
2013) 46.000 

160.00
0 2.8  33  14 oceanic 14/3 197 batch Deck 12 *none Aer. PA 

(4) 
230 - 
1120 ~   N/A     

(Endo et al., 
2015) 53.083 

-
177.00

0 2.8  ?  8.2 oceanic 5/3 197 batch Deck 12 *none Aer. 
PA, 
PCR 

(2) 
360, 
600 n 360 - 600 ~     

(Endo et al., 
2016) 41.500 

144.00
0 2.8  ?  5.4 oceanic 3/3 197 batch Deck 12 *Fe Aer. 

PA, 
PCR 

(4) 
180 - 
1000 n 

350 - 
1000 shift     

(Feng et al., 
2009) 57.580 

-
15.320 1.7  35  12 oceanic 14/1-2 200 

s.-
cont. Deck 2.7 N,P Aer. LM, PA 

(2) 
390, 
690 p 390 - 690 large Ps-n Cyli 

(Feng et al., 
2010) -74.230 

-
179.23

0 1.7  34  0 oceanic 
18/1-
14 200 

s.-
cont. Deck 2.7 none Aer. LM, PA 

(2) 
380, 
750 ~   large Chae Cyli 

(Gazeau et al., 
2017) 43.697 7.312 

125.
8  38  14 coastal 18/14 5000 batch in situ 45000 none SWsat PA 

(6) 
350 - 
1250 p 

600 - 
1000 N/A     

(Gazeau et al., 
2017) 42.580 8.726 

125.
8  38  23 coastal 27/18 5000 batch in situ 45000 none  SWsat PA 

(6) 
420 - 
1250 ~   N/A     

(Grear et al., 
2017) 41.575 

-
71.405 9.3  ?  9 est. 6/7 no 

chem
. Deck 9.1 ?none Comb. LM 

(3) 
220 - 
720 ~   ~     

(Hama et al., 
2016) 34.665 

138.94
0 7.1  ?  ? coastal 29/11 100 batch Deck 400 N,P,Si Aer. PA 

(3) 
400 - 
1200 ~   N/A     

(Hare et al., 
2007) 56.515 

-
164.73

0 6.0  ?  10.4 coastal 9-10/5 no 
s.-
cont. Deck 2.5 Fe,N,P, Si Aer. LM, PA 

(2) 
370, 
750  n 370 - 750 shift   Cyli 

(Hare et al., 
2007) 55.022 

-
179.03

0 6.0  ?  10.4 oceanic 9-10/3 no 
s.-
cont. Deck 2.5 Fe Aer. LM, PA 

(2) 
370, 
750  n 370 - 750 N/A     

(Hopkins et al., 
2010) 60.300 5.200 99.1  ?  10 coastal 21/9 no batch in situ 11000 N, P Aer. LM 

(2) 
300, 
600 n 300 - 600 N/A     

(Hoppe et al., 
2013) -66.833 0.000 1.9  34  3 oceanic 

27-
30/1 200 

s.-
cont. Lab 4 *none Aer. LM 

(3) 
200 - 
810 N/A 400 - 810 shift Syned Ps-n 

(Hoppe et al., 
2017b) 71.406 

-
68.601 1.9  33  9.5 oceanic 8/3 100 

s.-
cont. Deck 8 N,P,Si Aer. PA, LM 

(2) 
320, 
990 ~   ~     

(Hoppe et al., 
2017a) 63.964 

-
60.125 1.9  32  7.9 oceanic 

13-
14/3 100 

s.-
cont. Deck 8 N,P,Si Aer. LM 

(2) 
300, 
960 n 300 - 960 shift Frag Ps-n 

(Hussherr et al., 
2017) 71.406 

-
70.188 2.6  33  4.3 oceanic 9/3-9 200 batch Deck 10 *none Comb. LM, PA 

(6) 
510 - 
3300 n 

1040 - 
1620 ~     

(James et al., 
2014) -45.639 

170.67
1    ?  11.6 benthic 42/2   

fl.-
thr. Lab 0 none Comb. pic 

(2) 
400, 
1250  ~   N/A     

(Johnson et al., 
2011) 38.417 14.950    38  23.5 benthic 21/1 NA seep in situ 0 none NA PA, LM 

(3) 
420 - 
1600 p 420 - 590 large 

Toxa, 
Gram, Baci, 
Navi, Cocc 

Cycl, 
Neos, 
Rhab, 
Nitz 

(Kim et al., 
2006) 34.600 

128.50
0 4.3  ?  14 coastal 14/? 60 batch in situ 150 N,P Aer. LM 

(3) 
250 - 
750 N/A 400 - 750 shift Skel Nitz 

(Kim et al., 
2010) 34.600 

128.50
0 52.1  ?  12 coastal 20/22 no batch in situ 1600 N,P,Si 

SWsat/
Aer. LM 

(2) 
400, 
900 ~   shift Skel Euca 

(Mallozzi et al., 
2019) 29.241 

-
90.935 2.4  12  21 est. 112/9 80 

s.-
cont. Lab 20 *none Aer. PA, LM 

(2) 
400, 
1000 ~   shift Cyli   

(Mallozzi et al., 
2019) 29.272 

-
89.963 2.4  17  21 est. 112/9 80 

s.-
cont. Lab 20 *none Aer. PA, LM 

(2) 
400, 
1000 ~   shift Cyli   

(Maugendre et 
al., 2015) 43.667 -7.300 1.9  ?  15 oceanic 12/4 200 batch Deck 4 none SWsat  PA 

(2) 
360, 
630 ~   N/A     

(Nielsen et al., 
2010) 56.057 12.648 1.6  19  10.7 est. 14/4 175 

s.-
cont. Lab 2.5 *none Acid LM, PA 

(3) 
500 - 
1500 ~   ~     

(Nielsen et al., 
2012) -42.887 

147.33
9 1.8  31  16 coastal 14/4 250 

s.-
cont. Lab 2.5 *none Acid LM, PA 

(3) 
300 - 
1200 ~   ~     

(Park et al., 
2014) 34.600 

128.50
0 59.6  ?  17 coastal 19/17 no batch in situ 2400 N,P,Si 

SWsat/
Aer. LM, PA 

(6) 
160 - 
830 p 160 - 830 N/A Cera   
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(Paul et al., 
2015) 59.858 23.258 

112.
7    6  11 est. 46/22 3000 batch in situ 54000 none SWsat  PA 

(6) 
370 - 
1230 p 

820 - 
1000 N/A     

(Reul et al., 
2014) 36.540 -4.600 3.3  ?  21 coastal 7/6 200 batch Deck 20 

control/N
,P Aer. LM, PA 

(2) 
500, 
1000 p 

500 - 
1000 large     

(Roleda et al., 
2015) -45.639 

170.67
1    34  10.8 benthic 112/? NA 

fl.-
thr. Lab 0.65 none Comb. PA 

(2) 
430, 
1170 ~   N/A     

(Rossoll et al., 
2013) 54.329 10.149 29.8  18  18 est. 28/7 no batch Lab 300 N,P,Si Aer. LM 

(5) 
390 - 
4000 ~   N/A     

(Sala et al., 
2015) 41.667 2.800 26.1  38  14 coastal 9/2 no batch Lab 200 none CO2 LM 

(2) 
400, 
800 ~   N/A     

(Sala et al., 
2015) 41.667 2.800 26.1  38  22 coastal 9/2 no batch Lab 200 none CO2 LM 

(2) 
400, 
800 ~   N/A     

(Schulz et al., 
2008) 60.267 5.217 

133.
7  31  10.5 coastal 

25/18-
23 no batch in situ 27000 N,P Aer. PA 

(3) 
350 - 
1050 ~   N/A     

(Schulz et al., 
2013) 78.937 11.893 

158.
5  34  3 coastal 

30/26 
- 30 3000 batch in situ 45000 N,P,Si SWsat LM, PA 

(8) 
185 - 
1420  ~   N/A     

(Schulz et al., 
2017) 60.265 5.205 

125.
8  32  9 coastal 38/35 3000 batch in situ 75000 *N, P SWsat  LM, PA 

(8) 
310 - 
3050 n 

1165 - 
1425 N/A     

(Segovia et al., 
2017) 60.390 5.320 99.1  ?  11 coastal 22/9 no batch in situ 11000 control 

SWsat  
/Aer. FC 

(2) 
300, 
800 ~   N/A     

(Sett et al., 
2018) 54.329 10.149 49.8  20  5 est. 44/26 

sand 
filter batch Lab 1400 *none SWsat  LM, FC 

(2) 
540, 
1020 ~   ~     

(Shaik et al., 
2017) 15.453 43.801 5.6  35  29 coastal 2/1 no batch Deck 2 N,P,Si,Fe CO2 LM 

(2) 
330, 
1000 p 

330 - 
1000 ~     

(Shaik et al., 
2017) 15.453 43.801 5.6  36  29 coastal 9/1 no 

s.-
cont. Deck 2 N,P,Si,Fe CO2 LM 

(2) 
400, 
1000 p 

400 - 
1000 ~     

(Shaik et al., 
2017) 15.453 43.801 5.6  35  29 coastal 2/1 no batch Deck 2 N,P,Si,Fe CO2 LM 

(2) 
240, 
780 p 240 - 780 ~     

(Sommer et al., 
2015) 54.329 10.149 49.8  20  9,15 est. 24/11 

sand 
filter batch Lab 1400 *none SWsat LM 

(2) 
440, 
1040 ~   shift   

Prob, 
Thaln, 
Guin, 
Ps-n, 
Chae 

(Tatters et al., 
2013) -45.752 

170.81
0 0.8  35  14 coastal 14/2 80 

s.-
cont. Lab 0.8 N,P,Si,Fe Aer. LM 

(3) 
230 - 
570 N/A  400 - 570 shift Cosc, Ps-n 

Navi, 
Chae 

(Tatters et al., 
2018) 33.750 

-
118.21

5 12.1  ?  19 coastal 10/1 no 
chem
. Deck 20 

N/urea,P,
Si Aer. LM 

380, 
800 N/A   shift     

(Taucher et al., 
2018) 27.928 

-
15.365 97.6  37  

24-
22 coastal 60/35 3000 batch in situ 35000 N,P,Si SWsat LM, PA 

(8) 
350 - 
1030 p 

890 - 
1030 large Guin Lept 

(Thoisen et al., 
2015) 69.217 53.367 1.4  33  3 coastal 

8-
17/6-9 250 

s.-
cont. Lab 1.2 *none SWsat  LM 

(4) 
440 - 
3500 n 440 - 900 shift Navi I Navi II 

(Tortell et al., 
2002) -6.600 

-
81.017 7.1  ?  ? oceanic 11/4 no 

s.-
cont. Deck 4 *none Aer. PA, LM 

(2) 
150, 
750 p 150 - 440 ~     

(Tortell et al., 
2008) NA NA 7.1  ?  0 N/A 

10-
18/? no 

s.-
cont. Lab 4 *Fe Aer. LM, PA 

(3) 
100 - 
800 p 100 - 400 large Chae Ps-n 

(Tortell et al., 
2008) NA NA 7.1  ?  0 N/A 

10-
18/? no 

s.-
cont. Deck 4 *Fe Aer. LM, PA 

(3) 
100 - 
800 p 100 - 400 large Chae Ps-n 

(Tortell et al., 
2008) NA NA 7.1  ?  0 N/A 

10-
18/? no 

s.-
cont. Deck 4 *Fe Aer. LM, PA 

(3) 
100 - 
800 p 100 - 400 large Chae Ps-n 

(Trimborn et al., 
2017) -53.013 10.025 1.9  34  3 oceanic 30/4 200 

s.-
cont. Lab 4 none Aer. LM 

420, 
910 n 420 - 910 shift   Ps-n 

(Witt et al., 
2011) -23.450 

151.91
7    ?  

24-
25 benthic 11/4 NA 

fl.-
thr. Deck 10 none SWsat LM 

(4) 
310 - 
1140 p 

560 - 
1140 N/A     

(Wolf et al., 
2018) 78.917 11.933 1.9  ?  3 coastal 

10 -
13/1 200 

s.-
cont. Lab 4 none Aer. LM 

(2) 
400, 
1000 N/A   ~     

(Yoshimura et 
al., 2010) 49.500 

148.25
0 2.7  33  13.5 oceanic 14/5 243 batch Deck 9   Aer. PA 

(4) 
150 - 
590 n 150 - 280  N/A     
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(Yoshimura et 
al., 2013) 53.390 

-
177.01

0 2.8  ?  8.4 oceanic 14/3 197 batch Deck 12 *none Aer. PA, LM 

4 (300 
- 
1190) p 

960 - 
1190 N/A     

(Yoshimura et 
al., 2013) 49.020 

174.02
0 2.8  ?  9.2 oceanic 14/3 197 batch Deck 12 *none Aer. PA, LM 

(4) 
230 - 
1110 p 

880 - 
1110 N/A     

(Young et al., 
2015) -44.779 

-
64.073 7.1  ?  -1 coastal 21/21 no 

s.-
cont. Deck 4 *none Aer. PA 

(3) 
100 - 
800 ~   N/A     

(Young et al., 
2015) -44.780 

-
64.073 7.1  ?  -0.5 coastal 16/16 no 

s.-
cont. Deck 4 *none Aer. PA, LM 

(3) 
100 - 
800 ~   N/A     

(Young et al., 
2015) -44.780 

-
64.073 7.1  ?  1.5 coastal 20/20 no 

s.-
cont. Deck 4 *none Aer. PA 

(3) 
100 - 
800 ~   N/A     

 982 

 983 

 984 

Figure 1. RDR as a function of incubation volume and size of the mesh that was used 985 

while filling the incubation volumes (dmesh). The black and white boxes illustrate 986 

approximate ranges of the three main types of containers used in experiments. Please note 987 

that the general definition for mesocosms are volumes >1000 L (Guangao, 1990) but 988 

since most authors also use this term for open batch incubations with volumes between 989 

150 – 1000 L we also stick to this term for the intermediate class.   990 
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 991 

Figure 2. Habitats in which the ocean acidification experiments were conducted. The 992 

total number of studies is 69. ‘not reported’ means that coordinates where the incubation 993 

water was collected were not provided.  994 

 995 

Figure 3. Distribution of diatom experiments with associated OA response of the bulk 996 

communities as listed in Table 1. Blue circles = positive effect; red triangles = negative 997 

response; grey squares = no response; orange diamonds = response not reported. 998 

Locations were slightly modified in case of geospatial overlap to ensure visibility. Please 999 
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note that the three blue points in the Ross Sea at about -68, -165 are approximate locations 1000 

because the reference did not provide coordinates. 1001 

 1002 

Figure 4. Summary of the literature analysis. (A) Response of the bulk diatom 1003 

community to ocean acidification. (B) Shifts among different diatom species due to ocean 1004 

acidification. ‘Shift to large’ and ‘shift to small’ indicate that the diatom community 1005 

shifted towards the dominance of larger or smaller species, respectively. (C) Same data 1006 

as in B but excluding studies where species shifts within the diatom community were not 1007 

reported. This reduced the dataset from 69 to 40 studies. The left column is based on the 1008 
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number of studies. For example, the bulk diatom community was positively affected by 1009 

OA in 29 out of 69 studies which is 33 %. The right column is based on the RDR values. 1010 

For example, the ∑RDR value of all studies where the diatom community was positively 1011 

affected by OA was 605 which is 36 % of the total ∑RDR.   1012 

 1013 

  1014 

Figure 5. Winners and losers in diatom communities. The bar chart indicates the fraction 1015 

of experiments where the respective genera benefitted from high CO2 (blue) or were put 1016 

at a disadvantage relative to the control treatment (orange).  Shown here are diatom 1017 
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genera that were microscopically identified in at least 5 experiments. The left bars are 1018 

fractions based on the number of experiments (N, total number given above each plot). 1019 

The right bars are fractions based on the RDR values of these experiments (∑RDR of all 1020 

experiments considered given above each plot). (A) Chaetoceros. (B) Cylindrotheca. (C) 1021 

Pseudo-nitzschia. Please note that any such evaluation on the species level cannot be done 1022 

at present due to too few data. 1023 
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